Characterization of dicarboxylic acids for cellulose hydrolysis.
نویسندگان
چکیده
In this paper, we show that dilute maleic acid, a dicarboxylic acid, hydrolyzes cellobiose, the repeat unit of cellulose, and the microcrystalline cellulose Avicel as effectively as dilute sulfuric acid but with minimal glucose degradation. Maleic acid, superior to other carboxylic acids reported in this paper, gives higher yields of glucose that is more easily fermented as a result of lower concentrations of degradation products. These results are especially significant because maleic acid, in the form of maleic anhydride, is widely available and produced in large quantities annually.
منابع مشابه
Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were used, the resultant CNC surf...
متن کاملIsolationand Characterization of Nanocrystal from Corncob Waste Using H2SO4 Hydrolysis Method (RESEARCH NOTE)
Corncob is one of the industrial waste has cellulose content of 39.1 wt%, which makes it has high potential to be a raw material in the production of cellulose nanocrystal. Corncob was delignificated with 3.5 wt% HNO3 and NaNO2 10 mg, precipitated process with 17.5 wt% NaOH, and bleached with 10 wt% H2O2. Cellulose nanocrystal was obtained by hydrolysis using 45 wt% H2SO4. Corncob and cellulose...
متن کاملCharacterization of acid catalytic domains for cellulose hydrolysis and glucose degradation.
Cellulolytic enzymes consist of a catalytic domain, a linking peptide, and a binding domain. The paper describes research on carboxylic acids that have potential as catalytic domains for constructing organic macromolecules for use in cellulose hydrolysis that mimic the action of enzymes. The tested domains consist of the series of mono-, di-, and tricarboxylic acids with a range of pK(a)'s. Thi...
متن کاملEnhancing Enzymatic Hydrolysis of Cellulose by Ultrasonic Pretreatment
Slurries of rice-straw cellulose (obtained by delignification and removal of hemicelluloses from the powdered raw material) were subjected to ultrasonic waves at different intensities for various times (constant temperature). Susceptibility of the samples to cellulose-hydrolysis increased initially with pretreatment time, reaching a maximum or a constant level thereafter. Maximum glucose yi...
متن کاملModification of silica with 2,4-dinitrophenylhydrazanomethylphenol for monosaccharide productions
2,4-dinitrophenylhydrazanomethylphenol (DNPHMP) was immobilized onto silicate rice husk ash to form a heterogeneous catalyst denoted as RHDNPH. The elemental and EDX analysis of RHDNPH showed the nitrogen is incorporated into silica. The RHDNPH had 154.6 m2g-1 as a specific surface area. The FT-IR clearly showed the appearance of –NH and C=N absorption band at the expected range. The TGA curve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology progress
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2001